FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2011

Roll Number

COMPUTER SCIENCE

TIM	E A	LLOWED:	(PART	• /	30 MINU			MAXIM	UM N	IARKS: 20
		(PART	· · · · · · · · · · · · · · · · · · ·	2 HOURS & 30 MINUTES			MAXIMUM MARKS: 80			
NOT	NOTE: (i) First attempt PART-I (MCQs) on separate Answer Sheet which shall be taken back after 30 minutes.									
	(ii) Overwriting/cutting of the options/answers will not be given credit.									
				<u>(PART-I</u>	MCQs) (COMPULSC	<u>DRY)</u>			
Q.1.	Se	elect the best	option/ar	swer and fill in	n the appr	opriate box o	on the An s	swer Sheet.	(1	x 20=20)
(i)		•		ory techn ressed as part o	-		•	luding main n	nemor	y and mass
	(a)	Overlapping	g (b)	Extension	(c)	Management	t (d)	Interface	(e)	None of these
(ii)		per threading	-	gies deliver two	processii	ng threads per	physical	core for a tota	l of _	massive
	(a)	2	(b)	8	(c)	16	(d)	32	(e)	None of these
(iii)		unit is cap roprocessor.	able of m	imicking the p	rocessor a	nd taking over	r control o	of the system	bus ju	st like
	(a)	Control	(b)	DMA	(c)	I/O	(d)	PPI	(e)	None of these
(iv)	The	ascending or	der of a d	lata Hierarchy	is:					
	(a)	Bit-byte-fiel	d-record-	file-database	(b)	Bit-byte-reco	ord-field-f	ïle-database		
	(c)	Byte-bit-fiel	d-record-	file-database	(d)	Byte-bit-reco	ord-field-f	ïle-database	(e)	None of these
(v)		interrupts	are initia	ted by an I/O d	rive.					
	(a)	Internal	(b)	External	(c)	Software	(d)	Basic	(e)	None of these
(vi)	Soft	ware testing and			oftware qu	ality assuranc	e and rep	resents the ult	timate	view of,
	(a)	Code, design	n, specifi	cation	(b)	Specification	n, design a	and code gene	ration	
	(c)	Design, spec	cification	code	(d)	Code generat	tion, spec	ification, desi	gn ((e) None of these
(vii)	(vii) is an integration testing approach that is commonly used when shrinking wrapped software products are being developed.									
	(a)	Testing ((b) Smo	ke testing (c) Portab	ility testing	(d) Bot	h (b) and (c)	(e)	None of these
(viii)	(viii) Determine the result of attempting to compile and run the following code:									
	public class Tester {									
	<pre>public static void main(String[] args){</pre>									
	System.out.println(4 + ' ' +2);									
		}								
	}									
	(a)	42	(b)	2	(c)	6	(d)	4	(e)	None of these
(ix)	The	class relation	nship call	ed generalization	on is the s	ame as:				
	(a)	Inheritance	(b)	Aggregation	(c)	Association	(d)	Abstraction	(e)	None of these

COMPUTER SCIENCE

Q.2. (a)

(x)	A static partitioned memory management system has a total of six partitions. If one is allocated to the operating system, this will allow a total of:										
	-	Five user jobs			(b)	Six user job	S				
	(c)	Thirty-two user	; jobs		(d)	Thirty-six u	ser jobs	(e)	Sixt	y-four user jobs	
(xi)	A tı	ransaction require	ed to l	e ACID means it	should	be:	U			•	
	(a) Access, Control, Integration and Dependency (b) Atomic, Consistency, Isolation and Durability										
	(c)	Acquire, consis	tency,	Inter-linked and	Depend	dency (d)	Both (a)	and (b)	(e)	None of these	
(xii)		e reprocess the transaction then the database can be made to come to a state where the database is istent and so reprocessing the log can the database.									
	(a)	Recover	(b)	Rollback	(c)	Lock	(d)	Append	(e)	None of these	
(xiii)	Wh	at is the major ro	ole of t	he DDCMP?							
	(a)	(a) DDCMP does not need special hardware to find the beginning of a message									
	(b) DDCMP has a message header			(c)	(c) DDCMP has an IP Address						
	(d)	DDCMP does	not us	e CRC	(e)	None of the	se				
(xiv)	In a	synchronous mo	odem,	the receiving equa	alizer i	s known as	equa	lizer.			
	(a)	Adaptive	(b)	Impairment	(c)	Statistical	(d)	Compror	nise	(e) None of these	
(xv)	The	e maximum trans	fer sp	eed of 10 Base 5 is	s:						
	(a)	100 Mbps	(b)	2 Mbps	(c)	1 Gbps	(d)	10 Mbps	(e)	None of these	
(xvi)	Wh	ich of the follow	ing is	a layer 2 device?							
	(a)	Bridge	(b)	Router	(c)	Repeater	(d)	Hub	(e)	None of these	
(xvii)	Identify the type of routing protocol that maintains a topological database of the network?										
	(a)	Topological Sta	gical State (b) Shortest F		Shortest Pat	h First					
	(c)	Link State			(d)	Distance Ve	ector (e)	None of	these		
(xviii) The data portion of an information unit at a given OSI layer potentially can contain from all the higher layers, known as:					n contain h	eaders	, trailers and data				
	(a)	Compression	(b)	Buffer	(c)	Encapsulation	on (d)	Spooling	(e)	None of these	
(xix)	Identify the type of routing protocol that exchanges entire routing tables at regular intervals.										
	(a)	Link State	(b)	Interior Gateway	y Proto	cols	(c)	Apple Ta	ılk Ro	uting	
	(d)	Distance Vector	r		(e)	None of the	se				
(xx)	Wh	ich environment	consi	ders memory, proc	cess an	and device and file management from a global viewpoint?					
	(a) Distributed Operating System			(b)	Network Operating System						
	(c)	Multiprogramm	ning O	perating System	(d)	All of these	(e)	None of	these		
					PAR	T-II					

 (ii) Attempt ONLY FOUR questions from PART-II, selecting at least ONE question from each SECTION. All questions carry EQUAL marks. (iii) Extra attempt of any question or any part of the attempted question will not be considered. (iv) Use of CALCULATOR is allowed. 	NOTE:(i)	PART-II is to be attempted on separate Answer Book.
(iii) Extra attempt of any question or any part of the attempted question will not be considered.	(ii)	Attempt ONLY FOUR questions from PART-II, selecting at least ONE question from each
		SECTION. All questions carry EQUAL marks.
(iv) Use of CALCULATOR is allowed.	(iii)	Extra attempt of any question or any part of the attempted question will not be considered.
	(iv)	Use of CALCULATOR is allowed.

SECTION – A

(02+02+01=05)

- Explain that:(i) In how many ways DMA process may be initiated and be terminated?
- (ii) The sequence of events as DMA is requested by an I/O devices.
- (iii) What happens when DMAC receives DMA request from another channel while it is serving one?

COMPUTER SCIENCE

- (b) Why Interrupts are employed in computer? Briefly describe basic types of Interrupts. (05)
- (c) Differentiate between pre-emptive and non pre-emptive scheduling. Briefly describe round robin and shortest scheduling policies with examples for each. (10)

A bunch of jobs is arriving in the Ready Queue as shown below using SRT and RR(Q=5). Calculate the average turn around time. Draw the Gantt chart and describe which policy provides better results?

JOB	A.T	E.R.T
1	0	10
2	1	06
3	2	12
4	3	11
5	4	5

- Q.3. (a) Consider a slotted ring of length 10 km with a data rate of 10 Mbps and 500 repeaters, each of which introduces a 1-bit delay. Each slot contains room for one source-address byte, one destination-address byte, two data bytes and five control bits for a total length of 37 bits. How many slots are on the ring? (09)
 - (b) Compare the capacity allocation schemes for IEEE 802.5 token ring and FDDI. What are the relative pros and cons? (05)
 - (c) Compare the individual fields of the IPv4 header with the IPv6 header. Account for the functionality provided by each IPv4 field by showing how the same functionality is provided in IPv6. (06)

SECTION – B

Q.4. (a) Calculate the software cost for building, reusing, buying and contracting a software system by considering the following decision tree diagram. What decision would you like to take for this kind of software system? (12)

COMPUTER SCIENCE

- (b) Software requirement analysis is unquestionably the communication intensive step in the software process. Why does the communication path frequently break down? (08)
- Q.5. (a) What is polymorphism? How can we achieve polymorphism in Java and what are its prerequisites? (08)
 - (b) Write exception hierarchy in Java. Enlist the methods of Arithmetic exception, I/O Exception, Array Index Out of Bounds Exception Classes. (12)
- Q.6. (a) Describe the use of Print Stack Trace Method. Consider STACK with memory size 8. Initially it is empty. Find out the output of the following algorithm: (09) step 1. Set X :=4 and y :=6 step 2. Call PUSH(STACK, X+Y) step 3. Call PUSH(STACK, 5) step 4. Call PUSH(STACK, 5) step 5. Call PUSH(STACK, Y-3) step 6. Call PUSH(STACK, Y-3) step 6. Call PUSH(STACK, Y-X) step 7. Repeat while TOP !=NULL Call POP(STACK, ITEM) Write: ITEM [loop ends]

step 8. Exit

- (b) Elucidate the concept of Hashing. Explain in brief the various methods used to avoid collision in Hashing. (04)
- (c) Insert Key Records: 76, 93, 40, 47, 10, 55 (in this sequence) into the Hash Table of length m = 7 with the Hash Function $H(K) = K \mod m$. Perform linear and quadratic probing. (07)

SECTION – C

- **Q.7.** Write Short notes on the following:
 - (a) Block Structure of PL/SQL (b) Database Security
 - (c) Cybertalk: A new way to communicate (d) The promise of virtual reality
- Q.8. (a) What is normalization process? Explain the steps to normalize a relation with suitable examples. (09)
 - (b) Explain the DIFFERENCE between Client Side Technologies and the Server Side Technologies with some examples. (06)
 - (c) Define the following briefly:
 - (i) VBscript (ii) Servlet
 - (iii) CGI (iv) UDDI
 - (v) SOAP

Page 4 of 4

(5 x 4 = 20)

 $(1 \times 5 = 5)$