

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2019 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS	MAXIMUM MARKS = 100							
NOTE:(i) Attempt ONLY FIVE questions. ALL questions carry EQUAL marks								
(ii) All the parts (if any) of each Question places.	n must be attempted at one place instead of at different							
(iii) Candidate must write Q. No. in the Ans	(iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.							
(iv) No Page/Space be left blank between be crossed.	the answers. All the blank pages of Answer Book must							
(v) Extra attempt of any question or any pa	rt of the attempted question will not be considered.							
(vi) Use of Calculator is allowed.								

Q. No. 1. (a) Find the directional derivative of
$$f(x, y, z) = x y^2 + yz^2$$
 at the point (2,-1, 1) in (10) the direction of the vector $i + 2j + 2k$?

- (b) Evaluate $\int_{c} (xy + y^2) dx + x^2 dy$ where c is bounded by the line y = x and the (10) curve $y = x^2$
- Q. No. 2. (a) Find the constants a, b, and c so that F = (x+2y+az) i + (bx - 3y - z) j + (4x + cy + 2z) kis irrotational and hence find the function ψ such that $F = \nabla \psi$
 - (b) The forces F_1, F_2, F_3, F_4, F_5 and F_6 act along the sides of a regular hexagone taken (10) in order. Verify that all the forces will be in equilibrium if, $\sum F = 0$, and $F_1 - F_4 = F_3 - F_6 = F_5 - F_2$.
- **Q. No. 3.** (a) A system of forces acts on a plate in the form of an equilateral triangle of side 2a. (10) The moment of the forces about the three vertices are M_1 , M_2 and M_3 respectively. Find the magnitudes of the resultant.
 - (b) If a particle P move with a velocity V given by $V^2 = n^2 (ax^2 + 2bx + c)$. Show that (10) P executes a simple harmonic motion. Find the centre, the amplitude and the time period of the motion?
- Q. No. 4. (a) What is the difference between linear differential equation and Bernoulli's (10) equation? Also find the solution of the following differential equation.

$$x\left[\frac{dy}{dx} + y\right] = 1 - y$$

(b) Use the method of undetermined coefficient to solve the following differential (10) equation.

$$y'' - 3y' + 2y = 2x^3 - 9x^2 + 6x$$

Q. No. 5. (a) Solve the equation

 $0 = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x \qquad \text{with } x_0 = \frac{\pi}{2}$

(b) Derive two point Gaussian integration formula for the following integral and use it (10) to solve the integral.

$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, dx$$

Page 1 of 2

(10)

APPLIED MATHEMATICS

Q. No. 6. (a) Determine the second degree polynomials by using Newton's method. Also (10) estimate the value of f(0.1) and f(0.5) for the data.

x	0.0	0.2	0.4	0.6
f(x)	15.0	21.0	30.0	51.0

(b) Does the dominate diagonal is necessary for finding the numerical solution of system of linear equations by using Gauss Jacobi's and Gauss Seidal methods. Explain the reason. In what conditions a numerical method is used instead of analytical method? Find the solution of the following system by performing three itrations of Gauss Seidal method.

$$6x - 3y + z = 11 2x + y - 8z = 15 x - 7y + z = 10$$

Q. No. 7. (a) Define even function and odd function with examples. Verify that the Fourier (10)

Series for the function
$$f(x) = \begin{cases} 0 & \text{When } 0 < x < \pi \\ 1 & \text{When } \pi < x < 2 \ \pi^3 \end{cases}$$

is
$$f(x) = \frac{1}{2} - \frac{2}{\pi} (\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x...)$$

(b) Solve the following partial differential equation by using method of separable (10) variable.

$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$$
, given $u(x,o) = 6e^{-3x}$

- Q. No. 8. (a) The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4, and the (10) Simpson's rule gives value 2, what is the value of f(1)?
 - (b) Find the first two derivatives at x=1.1 and x=1 from the following data table. (10)

Ī	x	1	1.2	1.4	1.6	1.8	2.0
	f(x)	0.000	0.1280	0.5440	1.2960	2.4320	4.000
