

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

APPLIED MATHEMATICS

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100	
NOTE:(i) Attempt ONLY FIVE questions. ALL questions carry EQUAL marks				
(ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.				
 (iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. 				
 (vi) Extra attempt of any question or any part of the attempted question will not be considered. (v) Use of Calculator is allowed. 				
Q. No. 1.	(a)	Prove that $\nabla \cdot \left[\frac{f(r)\vec{r}}{r}\right] = \frac{2}{r}f(r)$) + f'(r)	(10)
	(b)	Verify Stokes' theorem for $\vec{A} =$ the upper half surface of the spl boundary.	$(2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$, where S is here $x^2 + y^2 + z^2 = 1$ and C is its	(10)
Q. No. 2.	(a)	Forces P, Q, R act at a point parall	el to the sides of a triangle ABC taken in the	(10)
		same order. Show that the magnitude of the resultant force is		
		$\sqrt{\mathbf{P}^2 + \mathbf{Q}^2 + \mathbf{R}^2 - 2 \mathbf{Q} \mathbf{R}}$	$\cos A - 2 R P \cos B - 2 P Q \cos C$	
	(b)	Find the distance from the cusp of t	he centroid of the region bounded by the	(10)
		cardioid $r = a (1 + \cos \theta)$.		
Q. No. 3.	(a)		onic motion in such a way that its velocity and ad f respectively and the corresponding quantities Find the distance PQ.	(10)
	(b)	Derive the radial and transverse co	mponents of velocity and acceleration of a particle.	(10)
Q. No. 4.	Solve	ve the following differential equations:		
	(a)	$\frac{d y}{d x} + \frac{y}{x} = x^3 y^4$		(10)
	(b)	$(D^2 - 5D + 6) y = x^3 e^{2x}$		(10)
Q. No. 5.	(a)	Solve the differential equation us $\frac{d^2 y}{d x^2} + y = \tan x$, $-\frac{\pi}{2} < $	sing the method of variation of parameters $x < \frac{\pi}{2}$	(10)
	(b)	Solve the Euler – Cauchy differe	ntial equation $x^2 y'' - 3 x y' + 4y = x^2 \ln x$.	(10)
Q. No. 6.	(a) I	Find the Fourier series of the follow $f(x) = \begin{cases} -x & \text{if } -\pi < x < \\ x & \text{if } 0 < x < \pi \end{cases}$	ring function: 0	(10)
	(b) S	$\begin{bmatrix} x & \text{if } 0 < x < \pi \\ \text{Solve the initial - boundary value prior} \end{bmatrix}$		(10)

APPLIED MATHEMATICS

- Q. No. 7. (a) Apply Newton Raphson method to find the smaller positive root of the equation (10) $x^2 - 4x + 2 = 0$
 - (b) Solve the following system of equations by Gauss Seidel iterative method by (10) taking the initial approximation as $x_1 = 0$, $x_2 = 0$, $x_3 = 0$:

$$5x_1 + x_2 - x_3 = 4$$

$$x_1 + 4x_2 + 2x_3 = 15$$

$$x_1 - 2x_2 + 5x_3 = 12$$

Q. No. 8.

(a) Approximate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 using (10)

(i) Trapezoidal rule with n = 4 (ii) Simpson's rule with n = 4 Also compare the results with the exact value of the integral.

(b) Apply the improved Euler method to solve the initial – value problem: (10) $y' = x + y, \quad y(0) = 0$

by choosing h = 0.2 and computing $y_1, ..., y_5$.
