

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2014

APPLIED MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS		MAXIMUM MARKS: 100		
NOTE:(i) (ii)	Attem	date must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper . pt FIVE questions in all by selecting THREE questions from SECTION-A and TWO ons from SECTION-B. ALL questions carry EQUAL marks.		
(iii	-	age/Space be left blank between the answers. All the blank pages of Answer Book must		
(iv) (v)		attempt of any question or any part of the attempted question will not be considered. f Calculator is allowed.		
		SECTION-A		
Q. No. 1.	(a)	prove that $curl(W\vec{F}) = (gradW) \ge \vec{F}$. If \vec{F} is irrotational and $W(x, y, z)$ is a scalar (10) function.		
	(b)	Determine whether the line integral: (10)		
		$\int (2xyz^2 dx + (x^2z^2 + zCosyz)dy + (2x^2yz + yCosyz)dz \text{ is independent of the}$		
		path of integration? If so, then compute it from (1,0,1) to $(0, \frac{f}{2}, 1)$.		
Q. No. 2.	(a)	State and prove Stoke's Theorem. (10)		
	(b)	Verify Stoke's Theorem for the function $F = x^2 i - xy j$ integrated round the square in the plane z=0 and bounded by the lines $x = y = 0$, $x = y = a$. (10)		
Q. No. 3.	(a)	Three forces act perpendicularly to the sides of a triangle at their middle points (10) and are proportional to the sides. Prove that they are in equilibrium.		
	(b)	Three forces P, Q, R act along the sides BC, CA, AB respectively of a triangle (10) ABC. Prove that, if P Sec A + Q Sec B + R Sec C = 0, then the line of action of the resultant passes through the orthocentre of the triangle.		
Q. No. 4.	(a)	Find the centroid of the surface formed by the revolution of the cardioide (10) $r = a(1 + Cos_{\pi})$ about the initial line.		
	(b)	A uniform ladder rests with its upper end against a smooth vertical wall and its foot on rough horizontal ground. Show that the force of friction at the ground is		
		$\frac{1}{2}W \tan_{\#}$, where W is the weight of the ladder and $_{\#}$ is its inclination with the vertical.		
Q. No. 5.	(a) (b)	Define briefly laws of friction give atleast one example of each law. (10) A uniform semi-circular wire hangs on a rough peg, the line joining its extremities making an angle of 45° with the horizontal. If it is just on the point of slipping, find the coefficient of friction between the wire and the peg.		

SECTION-B

- **Q. No. 6.** (a) If a point P moves with a velocity v given by $v^2 = n^2(ax^2 + 2bx + c)$, show that P (10) executes a simple harmonic motion. Find the center, the amplitude and the time-period of the motion.
 - (b) A particle P moves in a plane in such a way that at any time t its distance from a fixed point O is $r = at+bt^2$ and the line connecting O and P makes an angle $\int_{a}^{\frac{3}{2}} with a fixed line OA.$ Find the radial and transverse components of the velocity and acceleration of the particle at t = 1. (10)

Q. No. 7. (a) A particle of mass m moves under the influence of the force (10) $F = a(i \sin \tilde{S}t + j \cos \tilde{S}t)$. If the particles is initially at rest on the origin, prove that the work done upto time t is given by $\frac{a^2}{m\tilde{S}^2}(1-\cos \tilde{S}t)$, and that the instantaneous power applied is $\frac{a^2}{m\tilde{S}^2}Sin\tilde{S}t$. (b) A battleship is streaming ahead with speed V, and a gun is mounted on the battleship so as to point straight backwards, and is set an angle of elevation a, if v_o is the speed of projection relative to the gun, show that the range is $\frac{2v_o}{g}Sin\Gamma(v_oCos\Gamma - V)$. Also prove that the angle of elevation for maximum

range is
$$arcCos\left(\frac{V-\sqrt{V^2-8v_0^2}}{4v_0}\right)$$

- **Q. No. 8.** (a) Show that the law of force towards the pole, of a particle describing the curve (10) $r^n = a^n \cos n_n$ is given by $f = \frac{(n+1)h^2 a^{2n}}{r^{2n+3}}$.
 - (b) A bar 2 ft. long of mass 10 Ib., lies on a smooth horizontal table. It is struck horizontally at a distance of 6 inches from one end, the blow being perpendicular to the bar. The magnitude of the blow is such that it would impart a velocity of 3 ft./sec. to a mass of 2 Ib. Find the velocities of the ends of the bar just after it is struck.

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2014**

|--|

APPLIED MATHEMATICS, PAPER-II

TIME AL THREE H			100
NOTE:(i) (ii) (iii (iv)	Cand Atten quest EQU) No P be cr) Extra	didate must write Q.No. in the Answer Book in accordance with Q.No. in the Q.Paper. mpt FIVE questions in all by selecting TWO questions from SECTION-A, O tion from SECTION-B and TWO questions from SECTION-C. ALL questions c JAL marks. Page/Space be left blank between the answers. All the blank pages of Answer Book n rossed. ra attempt of any question or any part of the attempted question will not be considered. of Calculator is allowed.	arry
(v)	Use	or Calculator is anowed.	
		SECTION-A	
Q. No. 1.	(a)	Solve the initial-value problem $\frac{dy}{dx} = \frac{1}{x + y^2}; y(-2) = 0.$	(10)
	(b)	Initially there were 100 milligrams of a radioactive substance present. After 6 hours the mass decreased by 3%. If the rate of decay is proportional to the amount of the substance present at any time, find the amount remaining after 24 hours.	(10)
Q. No. 2.	(a)	Solve $(x^2 + 1)y'' + xy' - y = 0$.	(10)
	(b)	Obtain the partial differential equation by elimination of arbitrary functions, $a \sin x + b \cos y = z$ (take z as dependent variable).	(10)
Q. No. 3.	(a)	Solve the partial differential equation $u_{xx} + u_{yy} = u_t$,	(10)
		u(0, v, t) = u(a, v, t) = 0	
		subject to the conditions $u(x,0,t) = u(x,a,t) = 0$	
		and the initial condition, $u(x, y, 0) = W(x, y)$.	
	(b)	Solve $r + (a+b)s + abt = xy$ by Monge's method.	(10)
		SECTION-B	
Q. No. 4.	(a)	Prove that if $A_i, B_j, and C_k$ are three first order tensors, then their product	(10)
		$A_i B_j C_k$ $(i, j, k = 1, 2, 3)$ is a tensor of order 3, while	

If ${}^{A_{i_{1}}}i_{2}i_{3}\cdots i_{n}$ is a tensor of order *n*, then its partial derivative with respect to x_{p} (10)**(b**) that is $\frac{\partial}{\partial x_n} A_{i_1 i_2 i_3 \cdots i_n}$ is also a tensor of order n+1.

 $A_i B_j C_k(i, j = 1, 2, 3)$ form a first order tensor.

Page 1 of 2

APPLIED MATHEMATICS, PAPER-II

Q. No. 5. (a) Show that the transformation $\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -3 & -6 & -2 \\ -2 & 3 & -6 \\ 6 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is orthogonal and (10)

right-handed.

A second order tensor A_{ij} is defined in the system $Ox_1x_2x_3$ by $A_{ij} = x_ix_j$ i, j = 1, 2, 3. Evaluate its components at the point *P* where $x_1 = 0, x_2 = x_3 = 1$. Also evaluate the component A'_{11} of the tensor at *P*.

(b) The Christofell symbols of the second kind denoted by $\begin{cases} m \\ ij \end{cases}$ are defined (10)

$$\begin{cases} m\\ ij \end{cases} = g^{mk} [ij,k] \quad (i,j,k=1,2,...n).$$
Prove that (i)
$$\begin{cases} m\\ ij \end{cases} = \begin{cases} m\\ ji \end{cases}, (ii) [ij,k] = g_{mk} \begin{cases} m\\ ij \end{cases},$$
(iii)
$$\frac{\partial g^{ij}}{\partial x^k} = -g^{im} \begin{cases} i\\ km \end{cases} - g^{jm} \begin{cases} i\\ km \end{cases}.$$

SECTION-C

- **Q. No. 6.** (a) Apply Newton-Raphson's method to determine a root of the equation (10) $f(x) = \cos x - xe^x = 0$ such that $|f(x^*)| < 10^{-8}$, where x^* is the approximation to the root.
 - (b) Consider the system of the equations (10) $2x_1 - x_2 + 0x_3 = 7$ $-x_1 + 2x_2 - x_3 = 1$, $0x_1 - x_2 + 2x_3 = 1$ Solve the system by using Gauss-Seidel iterative method and perform three iterations.

Q. No. 7. (a) Use the trapezoidal and Simpson's rules to estimate the integral (10)

$$\int_{1}^{3} f(x)dx = \int_{1}^{3} (x^{3} - 2x^{2} + 7x - 5)dx .$$
(b) Find the approximate root of the equation $f(x) = 2x^{3} + x - 2 = 0$. (10)

Q. No. 8. (a) Find a 5th degree polynomial which passes through the 6 points given below. (10)

$$\begin{array}{c|c} x \\ \hline f(x) \\ \hline f(x) \\ \hline -9 \\ \hline -41 \\ \hline -189 \\ \hline -173 \\ \hline 9 \\ \hline 523 \\ \hline \end{array}$$

(b) Determine the optimal solution graphically to the linear programming problem, (10) *Minimize* $z = 3x_1 + 6x_2$

subject to
$$4x_1 + x_2 \ge 20$$
$$x_1 + x_2 \le 20$$
$$x_1 + x_2 \ge 10$$
$$x_1, x_2 \ge 0$$

Page 2 of 2

https://csshub.com.pk/
