FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2012

Roll Number

APPLIED MATHS, PAPER-II

TIME ALL	LOWED: THREE HOURS MAXIMUM MA	RKS: 100			
NOTE:(i)	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the	Q. Paper.			
(ii)	Attempt FIVE questions in all by selecting TWO questions from SECTION-A	and ONE			
	question from SECTION-B and TWO questions from SECTION-C. ALL ques	stions carry			
	EQUAL marks.				
(iii)	Extra attempt of any question or any part of the attempted question will not be cons	idered.			
(iv)	Use of Scientific Calculator is allowed.				
SECTION-A					

Q.1. Solve the following differential equations:

(a)
$$y''' - 3y'' + 2y' = \frac{e^x}{1 + e^{-x}}$$
 (10)

(b)
$$y' = \frac{2xye^{(x/y)^2}}{y^2 + y^2e^{(x/y)^2} + 2x^2e^{(x/y)^2}}$$
 (10)

Find the series solution of the following differential equation: Q. 2. (a) y'' - xy = 0(10)Use the method of Fourier integrals to find the solution of initial value problem (b) with the partial differential equation. $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$; $(-\infty < x < \infty)$

And with initial condition
$$u(x,0) = f(x)$$
 (10)

Q.3. (a) Solve
$$x^2 y'' - 3xy' + 5y = x^2 \sin(\ln x)$$
 (10)

Find the solution of wave equation (b) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary and initial conditions $u(x,0) = f(x), \qquad \frac{\partial u(x,t)}{\partial t} = g(x)$ u(0,t)=u(l,t)=0,

SECTION-B

Q. 4.	Discu	(5x4=20)			
	(i)	Tensors	(ii)	Kronecker delta	
	(iii)	Contraction	(iv)	Metric Tensor	

Contravariant tensor of order two (v)

Q. 5.
(a) Prove that
$$\begin{cases}
i \\
ij
\end{cases} = \frac{\partial}{\partial x^{i}} (\log \sqrt{g})$$
(b) Prove that
$$\Delta = \begin{vmatrix}
\delta_{m1} & \delta_{m2} & \delta_{m3} \\
\delta_{n1} & \delta_{n2} & \delta_{n3} \\
\delta_{p1} & \delta_{p2} & \delta_{p3}
\end{vmatrix} = \epsilon_{mnp} \text{ and } \epsilon_{ijk} \epsilon_{mnp} = \begin{vmatrix}
\delta_{mi} & \delta_{mj} & \delta_{mk} \\
\delta_{ni} & \delta_{nj} & \delta_{nk} \\
\delta_{pi} & \delta_{pj} & \delta_{pk}
\end{vmatrix}$$
Hence prove that
$$\epsilon_{ijk} \epsilon_{mnp} = \delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}$$
(10)

Page 1 of 2

(10)

APPLIED MATHS, PAPER-II

SECTION-C

Q. 6.	(a)	 (i) What is the difference between secant and false position method? Show also graphically. (ii) Prove that x_{n+1} = x_n - f(x_n)/f²(x_n) 	(5+5=10)
	(b)	Solve the following system by Jacobi method. (Up to four decimal places). 8x + y - z = 8 2x + y + 9z = 12 x - 8y + 12z = 35	
Q. 7.	(a)	Evaluate by $\frac{3}{8}$ Simpson's rule	(10)
	(b)	$\int_{0}^{3} x\sqrt{1+x^{2}} dx$; with n = 6 Also calculate the absolute error. The amount A of a substance remaining in a reacting system after an interval of time t in a certain chemical experiment is given by following data: A: 94.8 87.9 81.3 68.7	
		t: 2 5 8 14 Find t when A=80.	(10)
Q. 8.		If $f(x) = x^3$, show that $f(a,b,c) = a + b + c$ Solve by trapezoidal rule	(10)
		$\int_{0}^{2\pi} x \sin x dx ; \qquad \text{with } n = 8$	(10)
