

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

APPLIED MATH, PAPER-I

	APPLIED MATH, PAPER-I	
TIME A	LLOWED: 3 HOURS MAXIMUM	I MARKS:100
NOTE:	 (i) Attempt FIVE question in all by selecting at least TWO questions from S and THREE question from SECTION – B. All questions carry EQUAL (ii) Use of Scientific Calculator is allowed. 	
	<u>SECTION – A</u>	
Q.1.	 Explain the following giving examples and supported by figures: (a) Gradient (b) Divergence (c) Curl (d) Curvilinear Coordinates 	(5+5+5+5
Q.2.	Given that A,B,C are vectors having components along axis. Prove that: (a) $B x C = \begin{vmatrix} i & j & k \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$ (b) A x B x C = A _x B _x C _x (i x k) + A _y B _x C _y (j x k)	(10+10
Q.3. (a)	State and prove Stokes Theorem	(10
(b)	Given that V=4y i+x j + 2z k, find $\int (0 \times V)$. nd σ over the hemi sphere $x^2+y^2+z^2=a^2$, z>=0.	(10
	<u>SECTION – B</u>	
Q.4.	 Discuss the following systems supported by figures/diagrams: (a) Equilibrium of a System coplanar forces Centre of mass of right circular solid cone of height h. (b) Centre of gravity of a rigid body of any shape. 	(5 (5 (10

Q.5. (a) What is Simple Harmonic Motion? Discuss it in detail using Derivatives with respect time. (10)

- (b) Describe the Simple Harmonic Motion of a pendulum and Calculate the time period of the motion. (10)
- **Q.6.** (a) Derive expression for the following: • Moment of inertia (5) • Product of inertia (5) (b) Calculate the moment of inertia of solid sphere of mass m=37 and radius a=15. Derive the general expression. (10)**Q.7.** (a) Explain Kepler's Laws. (10)(b) What is Impulsive Motion? Derive its equation. (10) (10) **Q.8.** (a) Define Work, Torque, Power and energy. A cricket ball is thrown vertically upwards, it attained the maximum height h after t (b) Seconds. Calculate its. (10)Velocity of projection in direction vertically upward. • • Acceleration when it returns to the point of projection.

Www.csshub.com.pk

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

APPLIED MATH, PAPER-II

TIME ALLOWED: 3 HOURS

MAXIMUM MARKS:100

NOTE:	 (i) Attempt FIVE question in all by selecting at least TWO questions from SECTION-ONE question from SECTION-B and TWO questions from SECTION-C. questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed. 	
	<u>SECTION – A</u>	
Q.1.	Solve the following equations: (a) $d^2y/dx^2 + 5 dy/dx + 6y = x$ (b) $d^2y/dx^2 + 5 y x = e^x$	(10) (10)
Q.2. (a) (b)	Derive Cauchy Rieman partial differential equations. Derive Lapace Equation.	(10) (10)
	Solve: $(\partial^2 / \partial x^2 + \partial^2 / \partial x \partial y + \partial^2 / \partial y^2) u = 4 e^{3y}$ u'' + 6u' + 9=0; Given that $u(0)=2$ and $u'(0)=0$.	(10) (10)
0 (a)	$\frac{\textbf{SECTION} - \textbf{B}}{\textbf{Discuss the following supported by examples:}}$	
Q.4. (a)	• Tensor, • $\epsilon_{iik} \epsilon_{lmk}$	(5) (5)
(b)	 Scaler Fields for a continuously differentiable function f=f(x,y,z) Can we call a vector as Tensor, discuss. What is difference between a vector and a tensor? What happens if we permute the subscripts of a tensor? 	(5)
Q.5. (a)	Discuss the simplest and efficient method of finding the inverse of a square matrix a_{ij} of order 3x3.	(10)
(b)	Apply any efficient method to compute the inverse of the following matrix A: $\mathbf{A} = \begin{bmatrix} 25 & 2 & 1 \\ 2 & 10 & 1 \\ 1 & 1 & 4 \end{bmatrix}$	(10)
	<u>SECTION – C</u>	
Q.6. (a) (b)	Develop Gauss Siedal iterative Method for solving a linear system of equations A $x = b$, where A is the coefficient matrix. Apply Gauss Siedal iterative Method to solve the following equations: $25X_1 + 2X_2 + X_3 = 69$ $2X_1 + 10X_2 + X_3 = 63$ $X_1 + 2X_2 + X_3 = 43$	(10) (10)
Q.7. (a) (b)	Derive Simpson's Rule for finding out the integral of a function $f(x)$ from limits x=a to n=6 subintervals (i.e. steps). Apply Simpson's Rule for n=6 to evaluate:	x=b for (10) (10)
	$\int_{0}^{1} f(x) dx \text{where} f(x) = 1/(1 + x2).$	
Q.8. (a)	Derive Lagrange Interpolation Formula for 4 points:	(10)
(b)	A curve passes through the following points: (0,1), (1,2), (2,5), (3,10). Apply this Lagrange Formula to interpolate the polynomial	(10)

A curve passes through the following points: (0,1),(1,2),(2,5),(3,10). Apply this Lagrange Formula to interpolate the polynomial. (10)

Www.csshub.com.pk